ad

Class 11 Maths NCERT Solutions – Trigonometric Functions-chapter 3


Exercise 3.1
Q.1: Calculate the radian measurement of the given degree measurement:

(i).  25∘

(ii).  240∘

(iii).  −47∘30'

(iv).  520∘



Sol:

(i).  25∘

As we know that, 180∘ = π radian

Therefore, 25∘ = π180×25 radian = 5π36 radian

Hence, 25∘ = 5π36 radian



(ii).  240∘

As we know that 180∘ = π radian

Therefore, 240∘ = π180×240 radian = 4π3 radian

Hence, 240∘ = 4π3 radian



(iii).  −47∘30'

= −4712

= −952 degree

As we know that, 180∘ = π radian

Therefore, −952 degree = π180×−952 radian = −1936×2π radian = −1972π

Hence, −47∘30' = −1972π



(iv).  520∘

As we know that, 180∘ = n radian

Therefore, 520∘ = π180×520 radian = 26π9 radian

Hence, 520∘ = 26π9 radian





Q.2: Calculate the degree measurement of the given degree measurement: [Use π = 227]

(i) 1116



(ii) -4



(iii) 5π3



(iv) 7π6



Sol:

(i).  1116:

As we know, that Π Radian = 180°

Therefore, 1116 radian = 180π×1116 degree

= 45×11π×4 degree

= 45×11×722×4 degree

= 3158 degree

= 3938 degree

= 39∘+3×608 minute  [1∘ = 60’]

= 39∘+22'+12 minute

= 39∘+22'+30”  [1’ = 60’’]



(ii).  -4:

As we know, that Π Radian = 180°

Therefore, -4 radian = 180π×(−4) degree

= 180×7(−4)22 degree

= −252011 degree

= −229111 degree

= −229∘+1×6011 minutes     [1∘ = 60’]

= −229∘+5'+511

= −229∘+5'+27” [1’ = 60’’]



(iii).  5π3

As we know, that Π Radian = 180°

Therefore, 5π3 radian = 180π×5π3 degree

= 300∘



(iv).  7π6

As we know, that Π Radian = 180°

Therefore, 7π6 radian = 180π×7π6

= 210∘





Q.3: In a minute, wheel makes 360 revolutions. Through how many radians does it turn in 1 second?

Answer:

No. of revolutions made in a minute = 360 revolutions

Therefore, no. of revolutions made in a second = 36060 = 6

In one revolution, the wheel rotates an angle of 2π radian.

Therefore, in 6 revolutions, it will turn an angle of 12π radian.





Q.4: Calculate the degree measurement of the angle subtended at the centre of a circle of radius 100 m by an arc of length 22 m.

[Use π = 227]

Answer:

As we know,

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then, θ=lr

Given:

r = 100 m and L = 22 m

We have,

θ=22100 radian
= 180π×22100 degree

= 180×7×2222×100 degree

= 12610 degree

= 1235 degree

= 12∘36' [1∘ = 60’]

Therefore, the req angle is 12∘36'





Q.5: In a circle of diameter 40 m, the length of the chord 20 m. Find the length of minor arc of chord.

Answer:

13

Diameter of circle = 40 m

Radius of circle = 4020 m = 20 m

Let XY be the chord (length = 20 m) of the circle.

In ΔOXY, OX = OY  = radius of the circle = 20 m

XY = 20 m

Therefore,

ΔOXY is an equilateral triangle.
θ=60∘ = π3 radian
As we know,

In a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then, θ = lr

π3 = arc(AB)20 arc(AB)20 = 20π3 m
The length of the minor arc of the chord is 20π3 m.





Q.6: In two circles, arcs which has same length subtended at an angle of 60∘ and 75∘ at the center. Calculate the ratio of their radii.

 Sol:

Let, the radii of two circles be r1 and r2.

Let, an arc of length l subtend an angle of 60∘ at the center of the circle of radius r1, while let an arc of length l subtend an angle of 75∘ at the center of the circle of radius r2.

60∘ = π3 radian
75∘ = 5π12 radian
In a circle of radius r unit, if an arc of length l unit subtends an angle θ then:

θ = lr

l = r θ

l = r1π3

l = r25π12 r1π3 = r25π12 r1 = r254 r1r2 = 54

Therefore, the ratio of radii is 5: 4



Q.7: Calculate the angle in radian through which a pendulum swings if the length is 75 cm and the tip describes an arc of length

(i) 10 cm



(ii) 15 cm



(iii) 21 cm



Sol:

As we know that, in a circle of radius ‘r’ unit, if an arc of length ‘l’ unit subtends an angle θ radian at the center, then:

θ=lr
Here, r = 75 cm

(i).  10 cm:

θ = 1075 radian = 215 radian


(ii).  15 cm:

θ = 1575 radian = 15 radian


(iii).  21 cm:

θ = 2175 radian = 725 radian


Exercise 3.2
Q.1: Calculate the values of five trigonometric func. if cosy = −12 and y lies in 3rd quadrant.

Sol:

(i)  sec y :

Since, cos y = 12

Therefore, sec y = 1cosy = 1(−12)

Hence, sec y = -2



(ii)  sin y :

Since, sin2y+cos2y=1

Therefore, sin2y=1−cos2y ⇒ sin2y=1−(−12)2 ⇒ sin2y=1−14 ⇒ sin2y=34 ⇒ siny=±3√2

Since, y lies in the third quadrant, the value of sin y will be negative.

Therefore, sin y = 3√2



(iii)  cosec y = 1siny = 1(−3√2) = −23√

Therefore, cosec y = −23√



(iv)  tan y = sinycosy = tany=(−3√2)(−12) = 3–√

Therefore, tan y = 3–√



(v)  cot y = 1tany = 13√

Therefore, cot y = 13√





Q.2: Calculate the other five trigonometric function if we are given the values for sin y = 35, where y lies in second quadrant.

Sol:

sin y = 35

Therefore, cosec y = 1Siny = 135=53

Since, sin2y+cos2y=1 ⇒  cos2y=1–sin2y ⇒  cos2y=1–(35)2 ⇒ cos2y=1–925 ⇒ cos2y=1625 ⇒ cos y = ±45

Since, y lies in the 2nd quadrant, the value of cos y will be negative,

Therefore, cos y = – 45

⇒ sec y = 1cosy=1(−45)=–54

⇒ tan y = sinycosy=(35)(−45)=−34

⇒ cot y = 1tany=−43





 Q.3: Find the values of other five trigonometric functions if coty=34, where y lies in the third quadrant.

Sol:

cot y = 34

Since, tan y = 1coty=134=43

Since, 1+tan2y=sec2y

⇒  1+(43)2=sec2y ⇒  1+169=sec2y ⇒  259=sec2y ⇒  sec y = ±53
Since, y lies in the 3rd quadrant, the value of sec y will be negative.

Therefore, sec y = −53

cos y = 1secy=1(−53)=–35

Since, tan y = sinycosy ⇒  43=siny(−35) ⇒ sin y = (43)×(−35)=−45 ⇒  cosec y = 1siny=−54





Q.4: Find the values of other five trigonometric if secy=135, where y lies in the fourth quadrant.

Sol:

sec y = 135

cos y = 1secy=1(135)=513

Since, sin2y+cos2y=1

⇒   sin2y=1–cos2y ⇒   sin2y=1–(513)2 ⇒   sin2y=1–25169=144169 ⇒ sin y = ±1213
Since, y lies in the 4th quadrant, the value of sin y will be negative.

Therefore, sin y = −1213

⇒ cosec y = 1siny=1(−1213)=−1312

⇒ tan y = sinycosy=(−1213)(513)=−125

⇒ cot y = 1tany=1(−125)=−512





Q.5: Find the values of other five trigonometric function if tan y = −512 and y lies in second quadrant.

Sol:

tan  y = −512   [Given]

And, cot y = 1tany=1(−512)=–125

Since, 1+tan2y=sec2y

Therefore, 1+(–512)2=sec2y ⇒   sec2y=1+(25144) ⇒  sec2y=169144 ⇒ sec y = ±1312

Since, y lies in the 2nd quadrant, the value of sec y will be negative.

Therefore, sec  y = −1312

cos y = 1secy=1(−1312)=(−1213)

Since, tany=sinycosy

⇒  −512=siny(−1213) ⇒ sin y = (−512)×(−1213)=513
⇒ cosec y = 1siny=1(513)=135





Q.6: Calculate the value of trigonometric function sin 765°.

Sol:

The values of sin y repeat after an interval of 360° or 2n.

Therefore, sin 765° = sin ( 2 × 360° + 45° ) = sin 45° = 12√





Q.7: Calculate the value of trigonometric function cosec [-1410°]

 Sol:

It is known that the values of tan y repeat after an interval of 360° or 2n.

Therefore, cosec [-1410°] = cosec [-1410° + 4 × 360°] = cosec [ -1410° + 1440°] = cosec 30° = 2





Q.8: Calculate the value of the trigonometric function tan19π3.

Sol:

It is known that the values of tan y repeat after an interval of 360° or 2n.

Therefore, tan19π3 = tan613π = tan(6π+π3) = tanπ3 = tan 60° = 3–√





Q.9: Calculate the value of the trigonometric function sin(−11π3).

 Answer:

It is known that the values of tan y repeat after an interval of 360° or 2n.

Therefore, sin(−11π3) = sin(−11π3+2×2π) = sinπ3 = 3√2





Q.10: Calculate the value of the trigonometric function cot(−15π4).

 Sol:

It is known that the values of tany repeat after an interval of 180∘ or n.

Therefore, cot(−15π4) = cot(−15π4+4π) = cotπ4 = 1





Exercise 3.3
Q.1: Prove:

sin2π6+cos2π3–tan2π4=−12



Sol:

Now, taking L.H.S.

sin2π6+cos2π3–tan2π4:

= (12)2+(12)2–(1)2

= 14+14–1 = −12

= R.H.S.





Q.2: Prove:

2sin2π6+cosec27π6cos2π3=32



Sol:

Now, taking L.H.S.

2sin2π6+cosec27π6cos2π3 :

= 2(12)2+cosec2(π+π6)(12)2

= 2×14+(−cosecπ6)2(14)

= 12+(−2)2(14)

= 12+44

= 12+1

= 32

= R.H.S.





Q.3: Prove:

cot2π6+cosec5π6+3tan2π6=6



Sol:

Taking L.H.S.

cot2π6+cosec5π6+3tan2π6 :

= (3–√)2+cosec(π–π6)+3(13√)2

= 3+cosecπ6+3×13

= 3 + 2 + 1 = 6

= R.H.S.





Q.4: Prove:

2sin23π4+2cos2π4+2sec2π3=10



Sol:

Now, taking L.H.S.

2sin23π4+2cos2π4+2sec2π3 :

= 2{sin(π–π4)}2+2(12√)2+2(2)2

= 2{sinπ4}2+2×12+8

= 2(12√)2 + 1 + 8

= 1 + 1 + 8 = 10

= R.H.S.





Q.5: Calculate the value of:

(i).  sin75∘



(ii).  tan15∘



Sol:

(i).  sin75∘:

= sin(45∘+30∘)

= sin45∘cos30∘+cos45∘sin30∘

Since, [sin (x + y) = sin x cos y + cos x sin y]

= (12√)(3√2)+(12√)(12)

= 3√22√+122√

= 3√+122√



(ii).  tan15∘:

= tan(45∘–30∘)

= tan45∘–tan30∘1+tan45∘tan30∘

Since, [tan (x – y) = tanx–tany1+tanxtany]

= 1–13√1+1(13√)

= 3√–13√3+1√3√

= 3√–13√+1

= (3√–1)2(3√+1)(3√–1)

= 3+1–23√(3√)2–(1)2

= 4–23√3–1

= 2–3–√





Q.6:Prove:

cos(π4–x)cos(π4–y)–sin(π4–x)sin(π4–y)=sin(x+y)



Sol:

Now, taking L.H.S.

cos(π4–x)cos(π4–y)–sin(π4–x)sin(π4–y):
= 12[2cos(π4–x)cos(π4–y)]+12[−2sin(π4–x)sin(π4–y)] =12[cos{(π4–x)+(π4–y)}+cos{(π4–x)–(π4–y)}]+12[cos{(π4–x)+(π4–y)}–cos{(π4–x)–(π4–y)}]

Since, [2cos A cos B = cos (A + B) + cos (A – B)]

And, [2sin A sin B = cos (A + B) – cos (A – B)]

= 2×12[cos{(π4–x)+(π4–y)}]

= cos[π2–(x+y)]

= sin (x + y)

= R.H.S.





Q.7: Prove:

tan(π4+x)tan(π4–x)=(1+tanx1–tanx)2



Sol:

Since, tan (A + B)= tanA+tanB1–tanAtanB

And, tan (A – B) = tanA–tanB1+tanAtanB

Now, taking L.H.S.

tan(π4+x)tan(π4–x):

= (tanπ4+tanx1–tanπ4tanx)(tanπ4–tanx1+tanπ4tanx)

= (1+tanx1–tanx)(1–tanx1+tanx)

= (1+tanx1–tanx)2

= R.H.S.





Q.8: Prove:

cos(π+x)cos(−x)sin(π–x)cos(π2+x)=cot2x



Sol:

Now, taking L.H.S.

cos(π+x)cos(−x)sin(π–x)cos(π2+x):
= [−cosx][cosx](sinx)(−sinx)

= −cos2x−sin2x = cot2x

= R.H.S.





Q.9: Prove:

cos(3π2+x)cos(2π+x)[cot(3π2–x)+cot(2π+x)]=1



Sol:

Now, taking L.H.S.

cos(3π2+x)cos(2π+x)[cot(3π2–x)+cot(2π+x)]:

= sinxcosx[tanx+cotx]

= sinxcosx(sinxcosx+cosxsinx)

= (sinxcosx)[sin2x+cos2xsinxcosx]

= sin2x+cos2x = 1

= R.H.S.





Q.10: Prove:

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx



Sol:

Now, taking L.H.S.

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x:

=12[2sin(n+1)xsin(n+2)x+2cos(n+1)xcos(n+2)x]

=12[cos{(n+1)x–(n+2)x}–cos{(n+1)x+(n+2)x}+cos{(n+1)x+(n+2)x}+cos{(n+1)x–(n+2)x}]

Since, [2sin A sin B = cos (A + B) – cos (A – B)]

And, [2cos A cos B = cos (A + B) + cos (A – B)]

= 12×2cos{(n+1)x–(n+2)x}

= cos(−x) = cos x

= R.H.S.





Q.11 Prove:

cos(3π4+x)–cos(3π4–x)=−2–√sinx



Sol:

Since, cos A – cos B = −2sin(A+B2)sin(A–B2)

Now, taking L.H.S.

cos(3π4+x)–cos(3π4–x):
= −2sin{(3π4+x)+(3π4–x)2}sin{(3π4+x)–(3π4–x)2}

= −2sin(3π4)sinx

= −2sin(π–π4)sinx

= −2sinπ4sinx

= −2×12√×sinx

= −2–√sinx

= R.H.S.





Q.12: Prove:

sin26x–sin24x=sin2xsin10x



Sol:

Since, sin A + sin B = 2sin(A+B2)cos(A–B2)

And, sin A – sin B = 2cos(A+B2)sin(A–B2)

Now, taking L.H.S.

sin26x–sin24x:
= (sin6x+sin4x)(sin6x–sin4x)

= [2sin(6x+4x2)cos(6x–4x2)][2cos(6x+4x2)sin(6x–4x2)]

= (2sin 5x cos x) (2cos 5x sin x)

= (2 sin 5x cos 5x) (2 cos x sin x)

= sin 10x sin 2x

= R.H.S.





Q.13: Prove:

cos22x–cos26x=sin4xsin8x



Sol:

Since, cos A + cos B = 2cos(A+B2)cos(A–B2)

And, cos A – cos B = 2sin(A+B2)sin(A–B2)

Now, taking L.H.S.

cos22x–cos26x:
= (cos 2x + cos 6x)  (cos 2x – cos 6x)

= [2cos(2x+6x2)cos(2x–6x2)][−2sin(2x+6x2)sin(2x–6x2)]

= [2cos 4x cos (-2x)]   [ -2sin 4x sin ( -2x)]

= [2cos 4x cos 2x]  [-2sin 4x ( -sin2x)]

= [2sin 4x cos 4x]  [2sin 2x cos 2x]

= sin 8x sin 4x

= R.H.S.





Q.14:Prove:

sin2x+2sin4x+sin6x=4cos2xsin4x



Sol:

Now, taking L.H.S.

sin 2x + 2sin 4x + sin 6x:

= [sin 2x + sin 6x] + 2 sin 4x

= [2sin(2x+6x2)(2x–6x2)]+2sin4x

Since, sin A + sin B = 2sin(A+B2)cos(A–B2)

= 2sin 4x cos(-2x) + 2sin 4x

= 2sin 4x cos 2x + 2sin 4x

= 2sin 4x (cos 2x + 1)

= 2sin4x(2cos2x–1+1)

= 2sin4x(2cos2x)

= 4cos2xsin4x

= R.H.S.





Q.15: Prove:

cot4x(sin5x+sin3x)=cotx(sin5x–sin3x)



Sol:

Now, taking L.H.S.

cot 4x (sin 5x + sin 3x):

= cos4xsin4x[2sin(5x+3x2)cos(5x–3x2)]

Since, sin A – sin B = 2cos(A+B2)sin(A–B2)

= (cos4xsin4x)[2sin4xcosx]

=2cos 4x cos x . . . . . . . . . . . . . . . (1)

Now, taking R.H.S.

cot x (sin 5x – sin 3x):

= cosxsinx[2cos(5x+3x2)sin(5x–3x2)] sinA–sinB=2cos(A+B2)sin(A–B2)

= cosxsinx[2cos4xsinx]

= 2 cos 4x cos x . . . . . . . . . . . . . . . . . . . . (2)

From equation (1) and (2):

L.H.S. = R.H.S.





Q.16: Prove:

cos9x–cos5xsin17x–sin3x=−sin2xcos10x



Sol:

Since, cos A – cos B = 2sin(A+B2)sin(A–B2)

And, sin A – sin B = 2cos(A+B2)sin(A–B2)

Now, taking L.H.S.

cos9x–cos5xsin17x–sin3x:
= −2sin(9x+5x2)sin(9x–5x2)2cos(17x+3x2)sin(17x–3x2)

= −2sin7xsin2x2cos10xsin7x

= −sin2xcos10x

= R.H.S.





Q.17: Prove:

sin5x+sin3xcos5x+cos3x=tan4x



Sol:

Since, sin A + sin B = 2sin(A+B2)cos(A–B2)

And, cos A + cos B = 2cos(A+B2)cos(A–B2)

Now, taking L.H.S.

sin5x+sin3xcos5x+cos3x:
= 2sin(5x+3x2)cos(5x–3x2)2cos(5x+3x2)cos(5x–3x2)

= 2sin4xcosx2cos4xcosx = tan 4x

=R.H.S.





Q.18: Prove:

sinx–sinycosx+cosy=tanx–y2



Sol:

Since, cos A + cos B = 2cos(A+B2)cos(A–B2)

And, sin A – sin B = 2cos(A+B2)sin(A–B2)

Now taking L.H.S.

sinx–sinycosx+cosy:
= 2cos(x+y2)sin(x–y2)2cos(x+y2)cos(x–y2)

= sin(x–y2)cos(x–y2)

= tan(x–y2)

= R.H.S.





Q.19: Prove:

sinx+sin3xcosx+cos3x=tan2x



Sol::

Since, sin A + sin B = 2sin(A+B2)cos(A–B2)

And, cos A + cos B = 2cos(A+B2)cos(A–B2)

Now, taking L.H.S.

sinx+sin3xcosx+cos3x:

= 2sin(x+3x2)cos(x–3x2)2cos(x+3x2)cos(x–3x2)

= sin2xcos2x = tan 2x

= R.H.S.





Q.20: Prove:

sinx–sin3xsin2x–cos2x=2sinx



Answer:

Since, sin A – sin B = 2cos(A+B2)sin(A–B2)

cos2A–sin2A=cos2A
Now, taking L.H.S.

sinx–sin3xsin2x–cos2x:

= 2cos(x+3x2)sin(x–3x2)–cos2x

= 2cos2xsin(−x)−cos2x

= −2x(−sinx) = 2 sin x

= R.H.S.





Q.21: Prove:

cos4x+cos3x+cos2xsin4x+sin3x+sin2x=cot3x



Sol:

Taking L.H.S.

cos4x+cos3x+cos2xsin4x+sin3x+sin2x:

= (cos4x+cos2x)+cos3x(sin4x+sin2x)+sin3x

= 2cos(4x+2x2)cos(4x–2x2)+cos3x2sin(4x+2x2)cos(4x–2x2)+sin3x ⎡⎣⎢sinA+sinB=2sin(A+B2)cos(A–B2)∗cosA+cosB=2cos(A+B2)cos(A–B2)⎤⎦⎥

= 2cos3xcosx+cos3x2sin3xcosx+sin3x

= cos3x(2cosx+1)sin3x(2cosx+1) = cot 3x

= R.H.S.





Q.22: Prove:

cotxcot2x–cot2xcot3x–cot3xcotx=1



Sol:

Now, taking L.H.S.

cot x cot 2x – cot 2x cot 3x – cot 3x cot x :

= cotxcot2x–cot3x(cot2x+cotx)

= cotxcot2x–cot(2x+x)(cot2x+cotx)

= cotxcot2x–[cot2xcotx–1cotx+cot2x](cot2x+cotx)

= [cot(A+B)=cotAcotB–1cotA+cotB]

= cotxcot2x–(cot2xcotx–1) = 1

= R.H.S





Q.23: Prove:

tan4x=4tanx(1–tan2x)1–6tan2x+tan4x



Sol:

Since, tan 2A = 2tanA1–tan2A

Now, taking L.H.S.

tan 4x :

= tan2(2x)

= 2tan2x1–tan2(2x)

= 2(2tanx1–tan2x)1–(2tanx1–tan2x)2

= (4tanx1–tan2x)1–⎛⎝4tan2x(1–tan2x)2⎞⎠

=  (4tanx1–tan2x)⎡⎣(1–tan2x)2–4tan2x(1–tan2x)2⎤⎦

= 4tanx(1–tan2x)(1–tan2x)2–4tan2x

= 4tanx(1–tan2x)1+tan4x–2tan2x–4tan2x

= 4tanx(1–tan2x)1–6tan2x+tan4x

= R.H.S.





Q.24: Prove:

cos4x=1–8sin2xcos2x



Sol:

Now, taking L.H.S.

cos 4x:

= cos2(2x)

= 1–2sin22x[cos2A=1–2sin2A]

= 1–2(2sinxcosx)2[sin2A=2sinAcosA]

= 1–8sin2xcos2x

= R.H.S.





Q.25: Prove:

cos6x=32cos6x–48cos4x+18cos2x−1



Sol:

Now, taking L.H.S.

cos 3 (2x ):

= 4cos32x–3cos2x[cos3A=4cos3A–3cosA]

= 4(2cos2x–1)3–3(2cos2x−1)[cos2x=2cos2x−1]

= 4[(2cos2x)3–(1)3–3(2cos2x)2+3(2cos2x)]–6cos2x+3

= 4[8cos6x–1–12cos4x+6cos2x]–6cos2x+3

= 32cos6x–4–48cos4x+24cos2x–6cos2x+3

= 32cos6x–48cos4x+18cos2x−1

= R.H.S.





Exercise 3.4
 Q.1: Find general solutions and the principle solutions of the given equation: tan x = 3–√



Sol:

tan x = 3–√    [Given]

As we know that, tanπ3=3–√

And, tan4π3 = tan(π+π3) = tan(π3) = 3–√

Therefore, the principle solutions are x=π3 and 4π3

Now, tanx=tanπ3 x=nπ+π3, where n ∈ Z

Therefore, the general solution is x=nπ+π3, where n ∈ Z.





Q.2: Find general solutions and the principle solutions of the given equation: sec x = 2



Sol:

sec x = 2   [Given]

As we know that, secπ3=2

And, sec5π3 = sec(2π–π3) = secπ3 = 2

Therefore, the principle solutions are x=π3 and 5π3.

Now, secx=secπ3

And, cosx=cosπ3[secx=1cosx] x=2nπ±π3, where n ∈ Z

Therefore, the general solution is x=2nπ±π3, where n ∈ Z.





Q.3: Find general solutions and the principle solutions of the given equation:

cot = −3–√



Sol:

cot = −3–√          [Given]

As we know that, cotπ6=3–√⇒cot(π–π6)=−cotπ6=−3–√

And, cot(2π–π6) = −cotπ6 = −3–√

That is cot5π6=−3–√ and cot11π6=−3–√

Therefore, the principle solutions are x=5π6 and 11π6.

Now,cotx=cot5π6

And, tanx=tan5π6[cotx=1tanx] x=nπ+5π6, where n ∈ Z

Therefore, the general solution is x=nπ+5π6, where n ∈ Z.





Q.4: Find general solutions and the principle solutions of the given equation: cosec x = -2



Sol:

cosec x = -2     [Given]

As we know that, cosecπ6=2

Hence, cosec(π+π6) = −cosecπ6 = -2

And, cosec(2π–π6) = −cosecπ6 = -2

That is cosec7π6=−2 and cosec11π6=−2.

Therefore, the principle solutions are x=7π6 and 11π6.

Now,cosecx=cosec7π6

And, sinx=sin7π6[cosecx=1sinx] x=nπ+(−1)n7π6, where n ∈ Z

Therefore, the general solution is x=nπ+(−1)n7π6, where n ∈ Z.





Q.5: Find the general solution of the given equation: cos 4x = cos 2x

Sol:

cos 4x = cos 2x           [Given]

i.e.  cos 4x – cos 2x = 0

−2sin(4x+2x2)sin(4x–2x2)=0
Since, cos A – cos B = 2sin(A+B2)sin(A–B2)

(sin 3x)  (sin x) = 0

sin 3x = 0  or  sin x = 0

sin 3x = 0

3x=nπ
x=nπ3, where n ∈ Z

sin x = 0

⇒  x=nπ, where n ∈ Z

Q.6: Find the general solution of the given equation: cos 3x + cos x – cos 2x = 0

Sol:

cos 3x + cos x – cos 2x = 0        [Given]

2cos(3x+x2)cos(3x–x2)–cos2x=0
Since, cos A + cos B = 2cos(A+B2)cos(A–B2)

2cos 2x cos x – cos 2x = 0

cos 2x (2cos x – 1) = 0

cos 2x = 0  or  2cos x -1 = 0

cos 2x = 0

2x=(2n+1)π2, where n ∈ Z
x=(2n+1)π4, where n ∈ Z
2cos x -1 = 0

cosx=12 cosx=cosπ3, where n ∈ Z
x=2nπ±π3, where n ∈ Z





Q.7: Find the general solution of the given equation:  sin 2x + cos x = 0



Sol:

sin 2x + cos x = 0          [Given]

2sin x cos x + cos x = 0

cos x (2sin x + 1) = 0

cos x = 0   or   2sin x + 1 = 0

cos x = 0

cosx=(2n+1)π2, where n ∈ Z
2sin x + 1 = 0

= −sinπ6 = sin(π+π6) = sin7π6 ⇒  x=nπ+(−1)n7π6, where n ∈ Z

Therefore, the general solution is (2n+1)π2 or nπ+(−1)n7π6, where n ∈ Z.





Q.8: Find the general solution of the given equation:

sec22x=1–tan2x



Sol:

sec22x=1–tan2x           [Given]

1+tan22x=1–tan2x tan22x+tan2x=0
tan 2x ( tan 2x + 1) = 0

tan 2x = 0  or  tan 2x + 1 = 0

tan 2x = 0

tan 2x = tan 0

2x = n∏ + 0, where n ∈ Z

x=nπ2, where n ∈ Z
tan 2x + 1 = 0

tan 2x = -1= −tanπ4= tan(π–π4)= tan3π4 ⇒  2x=nπ+3π4, where n ∈ Z

⇒  x=nπ2+3π8, where n ∈ Z
Therefore, the general solution is nπ2 or nπ2+3π8, where n ∈ Z.





Q.9: Find the general solution of the given equation:  sin x + sin 3x + sin 5x = 0



Sol:

sin x + sin 3x + sin 5x = 0              [Given]

(sin x + sin 5x) + sin 3x = 0

[2sin(x+5x2)cos(x–5x2)]+sin3x=0
Since, sin A + sin B = 2sin(A+B2)cos(A–B2)

2sin 3x cos (-2x) + \sin 3x = 0

2sin 3x cos 2x + sin 3x = 0

sin 3x (2cos 2x + 1) = 0

sin 3x = 0 or  2cos 2x + 1 = 0

Now,

sin 3x = 0

3x=nπ, where n ∈ Z
x=nπ3, where n ∈ Z
2cos 2x + 1 = 0

cos2x=−12 = −cosπ3 = cos(π–π3) = cos2π3 2x=2nπ±2π3, where n ∈ Z
x=nπ±π3, where n ∈ Z
Therefore, the general solution is nπ3 or nπ±π3, where n ∈ Z.





Miscellaneous Exercise
 Q.1: Prove that:

2cosπ13cos9π13+cos3π13+cos5π13=0



Sol:

Taking L.H.S.

2cosπ13cos9π13+cos3π13+cos5π13 :
= 2cosπ13cos9π13+2cos(3π13+5π132)cos(3π13–5π132)

Since, [cosx+cosy=2cos(x+y2)cos(x–y2)]

= 2cosπ13cos9π13+2cos4π13cos(−π13)

= 2cosπ13cos9π13+2cos4π13cosπ13

= 2cosπ13[cos9π13+cos4π13]

= 2cosπ13[2cos(9π13+4π132)cos(9π13–4π132)]

= 2cosπ13[2cosπ2cos5π26]

= 2cosπ13×2×0×cos5π26

= 0

= R.H.S.

Therefore, 2cosπ13cos9π13+cos3π13+cos5π13=0





Q.2: Prove that:

(sin3x+sinx)sinx+(cos3x–cosx)cosx=0



Sol:

Taking L.H.S.

(sin3x+sinx)sinx+(cos3x–cosx)cosx :
= sin3xsinx+sin2x+cos3xcosx–cos2x

= cos3xcosx+sin3xsinx–(cos2x–sin2x)

= cos(3x–x)–cos2x

Since, [cos(A−B)=cosAcosB+sinAsinB]

= cos2x–cos2x

= 0

= R.H.S.

Therefore, (sin3x+sinx)sinx+(cos3x–cosx)cosx=0





Q-3: Prove that:

(cosx+cosy)2+(sinx–siny)2=4cos2x+y2



Sol:

Taking L.H.S.

(cosx+cosy)2+(sinx–siny)2 :
= cos2x+cos2y+2cosxcosy+sin2x+sin2y–2sinxsiny

= (cos2x+sin2x)+(cos2y+sin2y)+2(cosxcosy–sinxsiny)

= 1+1+2cos(x+y)

Since, [cos(A+B)=cosAcosB–sinAsinB]

= 2+2cos(x+y)

= 2[1+cos(x+y)]

= 2[1+2cos2(x+y2)–1]

Since, [cos2A=2cos2A–1]

= 4cos2(x+y2)

= R.H.S.

Therefore, (cosx+cosy)2+(sinx–siny)2=4cos2x+y2





Q-4: Prove that:

(cosx–cosy)2+(sinx–siny)2=4sin2x–y2



Sol:

Taking L.H.S.

(cosx–cosy)2+(sinx–siny)2 :
= cos2x+cos2y–2cosxcosy+sin2x+sin2y–2sinxsiny

= (cos2x+sin2x)+(cos2y+sin2y)–2(cosxcosy–sinxsiny)

= 1+1–2[cos(x–y)]

Since, [cos(A−B)=cosAcosB+sinAsinB]

= 2[1–cos(x–y)]

= 2[1–{1–2sin2(x–y2)}]

Since, [cos2A=1–2sin2A]

= 4sin2x–y2

= R.H.S.

Therefore, (cosx–cosy)2+(sinx–siny)2=4sin2x–y2





Q-5: Prove that:

sinx+sin3x+sin5x+sin7x=4cosxcos2xcos4x



Sol:

Taking L.H.S.

sinx+sin3x+sin5x+sin7x :
= (sinx+sin5x)+(sin3x+sin7x)

= 2sin(x+5x2)cos(x–5x2)+2sin(3x+7x2)cos(3x+7x2)

Since, [sinA+sinB=2sin(A+B2).cos(A–B2)]

= 2sin3xcos(−2x)+2sin5xcos(−2x)

= 2sin3xcos2x+2sin5xcos2x

= 2cos2x[sin3x+sin5x]

= 2cos2x[2sin(3x+5x2).cos(3x–5x2)]

= 2cos2x[2sin4x.cos(−x)]

= 4cos2xsin4xcosx

= R.H.S.

Therefore, sinx+sin3x+sin5x+sin7x=4cosxcos2xcos4x





Q-6: Prove that:

(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x



Sol:

Since, sinA+sinB=2sin(A+B2).cos(A−B2)

And, cosA+cosB=2cos(A+B2).cos(A−B2)

Taking L.H.S.

(sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x) :
= [2sin(7x+5x2).cos(7x–5x2)]+[2sin(9x+3x2).cos(9x–3x2)][2cos(7x+5x2).cos(7x–5x2)]+[2cos(9x+3x2).cos(9x–3x2)]

= [2sin6x.cosx]+[2sin6x.cos3x][2cos6x.cosx]+[2cos6x.cos3x]

= 2sin6x[cosx+cos3x]2cos6x[cosx+cos3x]

= tan6x

= R.H.S.

Therefore, (sin7x+sin5x)+(sin9x+sin3x)(cos7x+cos5x)+(cos9x+cos3x)=tan6x





Q-7: Show that: sin3y+sin2y–siny=4sinycosy2cos3y2



Sol:

Here, L.H.S = sin3y+sin2y–siny

= sin3y+(sin2y−siny)=sin3y+[2cos(2y+y2)sin(2y–y2)]

Since,  (sinx–siny)=[2cos(x+y2)sin(x–y2)]

= sin3y+[2cos(3y2)sin(y2)]

=[2sin(3y2)cos(3y2)]+[2cos(3y2)sin(y2)]

Since, sin 2x = 2 sin x cos x

=2cos3y2⋅[sin 3y2+siny2]

=2cos3y2⋅[sin (3y2+y2)2][cos (3y2–y2)2]

Since, sin x + sin y = 2sin(x+y2)cos(x–y2)

=2cos(3y2)2sinycos(y2) =4sinycos(y2)cos(3y2)
= R.H.S





Q-8: The value of tany=−43 where y in in 2nd quadrant then find out the values of siny2,cosy2andtany2.



Sol:

Here, y is in 2nd quadrant.

So, π2<y<π⇒π4<y2<π2

Thus, siny2,cosy2andtany2 lies in 1st quadrant.

Now,

tany=−43 sec2y=1+tan2y=1+(43)2=1+169=259
So, cos2y=925 ⇒cosy=±35

As y is in 2nd quadrant, cos y is negative.

cosy=−35
So, cos y = 2cos2y2–1

⇒−35=2cos2y2–1⇒2cos2y2=1–−35⇒2cos2y2=25⇒2cos2y2=15⇒2cos2y2=35√  [Since, cosy2 is positive]
⇒cosy2=5√5sin2y2+cos2y2=1⇒sin2y2+cos215√=1⇒sin2y2=1–15=45⇒sin2y2=25√  [Since,  siny2 is positive]
⇒sin2y2=25√5tany2=siny2cosy2=25√15√=2




Q-9: The value of cosy=−13 where y in in 3rd quadrant then find out the values of siny2,cosy2andtany2.



Sol:

Here, y is in 3rd  quadrant.

So, π<y<3π2⇒π2<y2<3π4

Thus, cosy2andtany2 are negative and siny2 is positive.

Now,  cosy=−13  [Given]

cosy=1–2sin2y2⇒sin2y2=1–cosy2⇒sin2y2=1–−132=1+132=23 ⇒siny2=2√3√×3√3√=6√3   [Since, siny2 is positive]
Now, cosy=2cos2y2–1 2cos2y2=1+cosy2=1–132=13 ⇒   cosy2=−13√=−13√×−3√3=−13√

Therefore, tany2=siny2cosy2=2√3√−13√=−2–√





Q-10: The value of siny=14 where y in in 2nd quadrant then find out the values of siny2,cosy2andtany2.



Sol:

Here, y is in 2nd quadrant.

So, π2<y<π⇒π4<y2<π2

Thus, siny2,cosy2andtany2 lies in 1st quadrant.

Now, siny=14 cos2y=1–2sin2y=1–(14)2=1–116=1516⇒cosy=−15√4  [Since, cosy is negative]

sin2y2=1–(−15√4)2=4+15√8 ⇒   siny2=4+15√8−−−−−√  [ Since, siny2 is positive ]
=4+15√8×22−−−−−−−−√=8+215√16−−−−−−√=8+215√√4 cos2y=1+cosy2=1+(−15√4)2=4–15√8

Therefore, cosy2=4–15√8−−−−−√ = 4–15√8×22−−−−−−−−√

= 8–215√16−−−−−√=8–215√√4

Now, tany2=siny2cosy2=(8+215√√4)(8−215√√4)

= 8+215√√8–215√√=8+215√√8–215√√×8+215√√8+215√√

=  (8+215√)2√64−60√=8+215√2=4+15−−√


Post a Comment

0 Comments